
Mathematical Olympiad Training

Polynomials

Definition

A polynomial over a ring R(Z, Q, R, C) in x is an expression of the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0, ai ∈ R, for 0 ≤ i ≤ n.

If an 6= 0, then n = deg p(x) is called the degree of p(x). A non-zero element r ∈ R is

a polynomial of degree 0. The zero 0 ∈ R is a polynomial and its degree is negative

infinity or undefined. The set of all polynomials over R in x is denoted by R[x]. ¤

For any f(x), g(x) ∈ R[x].

1. deg(f(x) + g(x)) ≤ max{deg f(x), deg g(x)}

2. deg f(x)g(x) = deg f(x) + deg g(x)

Many properties of integers have analogues for polynomials.

Properties

1. Sum, difference and product of polynomials are polynomials.

2. Let f(x), g(x) ∈ R[x], we say that f(x) divides g(x) if there exists non-zero

q(x) ∈ R[x] such that g(x) = f(x)q(x). If f(x) divids g(x), we say that f(x)

is a divisor of g(x) and write f(x)|g(x).

3. Let f(x), g(x) ∈ R[x], then there exists q(x), r(x) ∈ R[x] such that f(x) =

q(x)g(x) + r(x) and deg r(x) < deg g(x). (We say that R[x] is a Euclidean

domain.)
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4. A polynomial p(x) is said to be irreducible if it cannot be factorized into

product of polynomials of positive degree. It is said to be reducible if it is not

irreducible.

5. A polynomial p(x) is called a prime polynomial if p(x)|f(x)g(x) implies p(x)|f(x)

or p(x)|g(x). It is easy to see that a prime polynomial is irreducible and the

converse is true, but less obvious, only when R is a UFD.

6. Fix f(x), g(x) ∈ R[x], the following statements for d(x) ∈ R[x] are equivalent.

(a) For any non-zero p(x) ∈ R[x], p(x)|f(x) and p(x)|g(x) imply p(x)|d(x).

(b) d(x) is a polynomial of maximal degree satisfying the properties that

d(x)|f(x) and d(x)|g(x).

(c) d(x) is a non-zero polynomial of minimal degree such that there exists

a(x), b(x) ∈ R[x] with d(x) = p(x)f(x) + q(x)g(x).

If d(x) satisfies one, hence all, of the above properties, we say that d(x)

is a greatest common divisor (GCD) of f(x) and g(x) and write d(x) =

(f(x), g(x)). GCD always exists and is unique up to a unit (an invertible

element in R) for every non-zero polynomials f(x) and g(x).

7. Any non-zero p(x) ∈ R[x] can be factorized uniquely (up to unit and permu-

tation) into product of irreducible polynomials. (We say that R[x] is a unique

factorization domain (UFD). To be more precise, R[x] is a UFD if R is a UFD

and it is well known that Z, Q, R, C are all UFD.)
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Theorem (Remainder Theorem)

When p(x) ∈ R[x] is divided by x − a, the remainder is p(a). In particular x − a

divides p(x) if and only if p(a) = 0. ¤

The notion of reducibility of polynomial depends on the ring of coefficients R.

For example, x2 − 2 is irreducible over Z but is reducible over R and x2 + 1 is

irreducible over R but is reducible over C.

Proposition

1. (Gauss Lemma) If a polynomial f(x) ∈ Z[x] is reducible over Q, i.e. there

exists p(x), q(x) ∈ Q[x] of positive degree such that f(x) = p(x)q(x), then

f(x) is reducible over Z.

2. (Eisenstein Criterion) Let f(x) = anx
n +an−1x

n−1 + · · ·+a1x+a0 ∈ Z and

p be a prime number. Suppose

(a) p - an

(b) p|ak for 0 ≤ k ≤ n− 1

(c) p2 - a0

Then f(x) is irreducible over Q. ¤

The most important theorem about polynomials is the following.

Theorem (Fundamental Theorem of Algebra)

A polynomial of degree n over C has n zeros on C counting multiplicity. ¤
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Another way of stating Fundamental Theorem of Algebra is every complex poly-

nomial p(x) ∈ C[x] of degree n can be factorized into product of linear polynomials,

i.e. there exists a, α1, α2, · · · , αn ∈ C such that p(x) = a(x−α1)(x−α2) · · · (x−αn).

Corollary

1. If a polynomial of degree not greater than n has n + 1 distinct zeros, then it

is the zero polynomial.

2. Two polynomials of degree not greater than n are equal if they have the same

value at n + 1 distinct numbers. ¤

For polynomials with real coefficients p(x) ∈ R[x], we have

Propositions

1. Let p(x) ∈ R[x] and α ∈ C. If p(α) = 0, then p(ᾱ) = 0, where ᾱ denotes the

complex conjugate of α.

2. Any p(x) ∈ R[x] can be factorized into product of quadratic and linear poly-

nomials over R. ¤

A polynomial p(x) ∈ R[x] can also be considered as a function p : R → R. One can

always find a unique polynomial of degree n with n + 1 prescribed values.

Lagrange Interpolation Formula

Given any distinct x0, x1, · · · , xn ∈ R and any y0, y1, · · · , yn ∈ R. There exists
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unique polynomial p(x) ∈ R[x] of degree n such that p(xi) = yi for all i = 0, 1, · · · , n.

In fact we have

p(x) =
n∑

i=0

(x− x0)(x− x1) · · · ̂(x− xi) · · · (x− xn)yi

(xi − x0)(xi − x1) · · · ̂(xi − xi) · · · (xi − xn)
,

where the notation ̂(x− xi) means that (x− xi) is absent.

Another way of writing the interpolation formula is
∣∣∣∣∣∣∣∣∣∣∣

y xn · · · x2 x 1
y0 x0

n · · · x0
2 x0 1

y1 x1
n · · · x1

2 x1 1
...

...
. . .

...
...

...
yn xn

n · · · xn
2 xn 1

∣∣∣∣∣∣∣∣∣∣∣

= 0.

Proposition

A rational polynomial p(x) ∈ Q[x] takes integer values on all integers if and only if

p(x) = a0

(
x

0

)
+ a1

(
x

1

)
+ a2

(
x

2

)
+ · · ·+ an

(
x

n

)

for some a0, a1, a2, · · · , an ∈ Z, where
(

x
k

)
= x(x−1)(x−2)···(x−k+1)

k!
, k 6= 0 and

(
x
0

)
= 1.

Symmetric Polynomials

1. If a polynomial p(x1, x2, · · · , xn) in n variables satisfies

p(x1, · · · , xi, · · · , xj, · · · , xn) = p(x1, · · · , xj, · · · , xi, · · · , xn)

for any i 6= j, then p(x1, x2, · · · , xn) is called a symmetric polynomial.

2. The elementary symmetric polynomials of degree k, k = 0, 1, 2, · · · , n, in n

variables x1, x2, · · · , xn is defined by

σk(x1, x2, · · · , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik .
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For example σ0 = 1, σ1 = x1 + x2 + · · ·+ xn, σ2 = x1x2 + x1x3 + · · ·+ xn−1xn,

· · · , σn = x1x2 · · · xn.

3. The k-th power sum, k ≥ 0, of n variables x1, x2, · · · , xn is defined by

Sk(x1, x2, · · · , xn) =
∑

1≤i≤n

xi
k = x1

k + x2
k + · · ·+ xn

k.

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial can be expressed as a polynomial in elementary sym-

metric polynomials in (or power sum of) those variables.

Newton-Girard Formulae

Let Sk be the k-th power sum and σk be the elementary symmetric polynomials of

degree k in x1, x2, · · · , xn. Then for any positive integer m,

m−1∑

k=0

(−1)kσkSm−k + (−1)mmσm = 0.

Here σ0 = 1, σk = 0 when k > n.

Example:

For m = 1, 2, 3, · · · , n, we have

S1 − σ1 = 0

S2 − σ1S1 + 2σ2 = 0

S3 − σ1S2 + σ2S1 − 3σ3 = 0

...

Sn − σ1Sn−1 + · · ·+ (−1)n−1σn−1S1 + (−1)nnσn = 0
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For m > n, we have

Sm − σ1Sm−1 + σ2Sm−2 + · · ·+ (−1)nσnSm−n = 0

Vieta’s Formulae

Let p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 ∈ C be a polynomial over C of degree

n and α1, α2, · · · , αn be the roots of p(x) = 0. Let σk be the elementary symmetric

polynomials of degree k in α1, α2, · · · , αn. Then we have

σk = (−1)k an−k

an

.

Application to recurrence sequences

Combining Vieta’s formula with Newton-Girard formula, we get an obvious relation

anSm + an−1Sm−1 + an−2Sm−2 + · · ·+ a0Sm−n = 0.

This means that the sequence S0, S1, S2, · · · satisfies the recurrence relation

anSk+n + an−1Sk+n−1 + an−2Sk+n−2 + · · ·+ a0Sk = 0, for k ≥ 0.

More generally, fix any A1, A2, · · · , An ∈ C, let

xk = A1α1
k + A2α2

k + · · ·+ Anαn
k. (∗)

Then x0, x1, x2, · · · satisfies the recurrence relation

anxk+n + an−1xk+n−1 + an−2xk+n−2 + · · ·+ a0xk = 0, for k ≥ 0. (∗∗)

Equation p(x) = anxn +an−1x
n−1 + · · ·+a0 = 0 is called the characteristic equation.

By solving it, we can find the general solution (∗) of the recurrence relation (∗∗).

7



Example: Fibonacci sequence

The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, · · · is defined by the recurrence equation

{
Fk = Fk−1 + Fk−2, for k > 1

F0 = 0, F1 = 1
.

The characteristic equation is x2 − x− 1 = 0 and its roots are 1±√5
2

. Solving

{
A1 + A2 = F0 = 0

A1α1 + A2α2 = F1 = 1
,

we have A1 = 1√
5
, A2 = − 1√

5
and

Fk =
1√
5
α1

k − 1√
5
α2

k

=
1√
5




(
1 +

√
5

2

)k

−
(

1−√5

2

)k



=
1√
5




(
1 +

√
5

2

)k

+
1

2




where the notation [x] means the largest integer not greater than x.

Example 1

Find all rational polynomials p(x) = x3 + ax2 + bx + c such that a, b, c are roots of

the equation p(x) = 0.

Solution

By Vieta’s formula 



a + b + c = −a

ab + bc + ca = b

abc = −c

From the third equation (ab + a)c = 0. Thus ab = −1 or c = 0.

If c = 0, then a + b = −a and ab = b. Hence (a, b, c) = (0, 0, 0) or (1,−2, 0).
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If ab = −1, then c = −2a− b and

−1 + b(−2a− b) + (−2a− b)a = b

2a2 − 2 + b + b2 = 0

2a4 − 2a2 + a2b + a2b2 = 0

2a4 − 2a2 − a + 1 = 0

Since a is rational, the only solution is a = 1 and (a, b, c) = (1,−1,−1).

Hence the solution of the problem is (a, b, c) = (0, 0, 0), (1,−2, 0) or (1,−1,−1).

Example 2

Given that p(x) is a polynomial of degree n such that p(k) = 2k for k = 0, 1, 2, · · ·n.

Find p(n + 1).

Solution

Take

p(x) =

(
x

0

)
+

(
x

1

)
+

(
x

2

)
+ · · ·+

(
x

n

)
,

then p(x) satisfies the condition of the problem and

p(n + 1) =

(
n + 1

0

)
+

(
n + 1

1

)
+

(
n + 1

2

)
+ · · ·+

(
n + 1

n

)

=

(
n + 1

0

)
+

(
n + 1

1

)
+

(
n + 1

2

)
+ · · ·+

(
n + 1

n

)
+

(
n + 1

n + 1

)
− 1

= 2n+1 − 1

Example 3

Given that





x + y + z = 1

x2 + y2 + z2 = 3

x3 + y3 + z3 = 7

. Find the value of x5 + y5 + z5.
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Solution

Let Sk and σk be the k-th power sum and symmetric sum of x, y, z. Then by Newton

formula 



S1 − σ1 = 0

S2 − σ1S1 + 2σ2 = 0

S3 − σ1S2 + σ2S1 − 3σ3 = 0

⇒





σ1 = 1

σ2 = −1

σ3 = 1

.

Thus x, y, z are roots of the equation t3−t2−t−1 = 0 and Sk satisfies the recurrence

relation Sk+3 = Sk+2 + Sk+1 + Sk, k ≥ 0. Therefore S4 = 1 + 3 + 7 = 11 and

S5 = 3 + 7 + 11 = 21.

Example 4

If x, y are non-zero numbers with x2 + xy + y2 = 0. Find ( x
x+y

)2001 + ( y
x+y

)2001.

Solution

Observe that x
x+y

+ y
x+y

= 1 and x
x+y

· y
x+y

= xy
x2+2xy+y2 = xy

xy
= 1. We know that x

x+y
,

y
x+y

are roots of t2 − t + 1 = 0. Thus Sk = ( x
x+y

)k + ( y
x+y

)k satisfies the recurrence

relation {
Sk+2 = Sk+1 − Sk, k ≥ 0

S0 = 2, S1 = 1
.

Then the sequence {Sk}, k ≥ 0, is 2, 1,−1,−2,−1, 1, 2, 1, · · · and Sk = Sl if k ≡

l(mod6). Therefore S2001 = S3 = −2.

Example 5 (IMO 1999)

Let n ≥ 2 be a fixed integer. Find the least constant C such that the inequality

∑
1≤i<j≤n

xixj(xi
2 + xj

2) ≤ C

( ∑
1≤i≤n

xi

)4

holds for any x1, x2, x3, · · · , xn ≥ 0. For this constant C, characterize the instances

of equality.
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Solution

Since the inequality is homogeneous, we may assume that S1 = σ1 = 1. By Newton

formula, S4 − σ1S3 + σ2S2 − σ3S1 + 4σ4 = 0. Then

∑
1≤i<j≤n

xixj(xi
2 + xj

2) =
∑

1≤i≤n

(
xi

3
∑

j 6=i

xj

)

=
∑

1≤i≤n

xi
3(1− xi)

= S3 − S4

= σ2S2 − σ3S1 + 4σ4

= σ2(1− 2σ2) + 4σ4 − σ3σ1

≤ 1

8

The last inequality holds since

σ2(1− 2σ2) = 2σ2(
1

2
− σ2) ≤ 1

2
(σ2 + (

1

2
− σ2))

2 =
1

8

by AM-GM inequality and

4σ4 = 4

(
n

4

) (
σ4(
n
4

)
) 3

4
(

σ4(
n
4

)
) 1

4

≤ 4

(
n

4

)
σ3(
n
3

) σ1

n
=

n− 3

n
σ3σ1 ≤ σ3σ1

by symmetric mean inequality and the equality holds if and only if σ2 = 1
4

and

σ3 = σ4 = 0. Therefore the least value of C is 1
8

and the equality holds for the

original inequality if and only if two xi are equal and the rest are zero.

Example 6 (IMO 2006)

Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be

a positive integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . . )), where
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P occurs k times. Prove that there are at most n integers t such that Q(t) = t.

Solution (by Tsoi Yun Pui)

Denote P (P (· · ·P︸ ︷︷ ︸
k

(x)) · · · ) by Qk(x). If there is at most one integer t satisfying

Qk(t) = t, then we are done. Otherwise, let s, t be integers such that Qk(s) =

s, Qk(t) = t. As P (x) is a polynomial with integral coefficients, u− v |P (u)−P (v)

for any integers u, v. So

s− t |P (s)− P (t) |Q2(s)−Q2(t) | · · · |Qk(s)−Qk(t) = s− t,

and hence both s− t |P (s)− P (t) and P (s)− P (t) | s− t. This implies that

P (s)− P (t) = s− t or P (s)− P (t) = t− s.

i.e.

P (s)− s = P (t)− t or P (s) + s = P (t) + t (∗)

It is impossible to have P (s)−P (t) = s− t and P (u)−P (t) = t− u for distinct

integral roots s, u, t of the equation Qk(x) = x. Otherwise

P (s)− P (u) = s− t− (t− u) = s + u− 2t.

But P (s) − P (u) = s − u or u − s. In either cases, it yields s = t or u = t.

Contradiction. So only one equation in (∗) is true for all the integer roots of Qk(x) =

x.

In either cases, let us fix t. Then all integral roots of Qk(x) = x are also, at the

same times, roots of the equation P (x)−x = 0 or P (x)+x = 0. Note that P (x)−x

and P (x) + x are polynomials of degree n. So there is at most n such roots. Hence

there are at most n integers t such that Q(t) = t.
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